{ "id": "1910.09944", "version": "v1", "published": "2019-10-22T13:04:31.000Z", "updated": "2019-10-22T13:04:31.000Z", "title": "The nuclearity of Gelfand-Shilov spaces and kernel theorems", "authors": [ "Andreas Debrouwere", "Lenny Neyt", "Jasson Vindas" ], "comment": "24 pages", "categories": [ "math.FA" ], "abstract": "We study the nuclearity of the Gelfand-Shilov spaces $\\mathcal{S}^{(\\mathfrak{M})}_{(\\mathscr{W})}$ and $\\mathcal{S}^{\\{\\mathfrak{M}\\}}_{\\{\\mathscr{W}\\}}$, defined via a weight (multi-)sequence system $\\mathfrak{M}$ and a weight function system $\\mathscr{W}$. We obtain characterizations of nuclearity for these function spaces that are counterparts of those for K\\\"{o}the sequence spaces. As an application, we prove new kernel theorems. Our general framework allows for a unified treatment of the Gelfand-Shilov spaces $\\mathcal{S}^{(M)}_{(A)}$ and $\\mathcal{S}^{\\{M\\}}_{\\{A\\}}$ (defined via weight sequences $M$ and $A$) and the Beurling-Bj\\\"orck spaces $\\mathcal{S}^{(\\omega)}_{(\\eta)}$ and $\\mathcal{S}^{\\{\\omega\\}}_{\\{\\eta\\}}$ (defined via weight functions $\\omega$ and $\\eta$). Our results cover anisotropic cases as well.", "revisions": [ { "version": "v1", "updated": "2019-10-22T13:04:31.000Z" } ], "analyses": { "subjects": [ "46A11", "46E10", "46A45" ], "keywords": [ "gelfand-shilov spaces", "kernel theorems", "nuclearity", "results cover anisotropic cases", "weight function system" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }