arXiv:1909.02731 [math-ph]AbstractReferencesReviewsResources
On the eigenvalue counting function for Schrödinger operator: some upper bounds
Published 2019-09-06Version 1
The aim of this work is to provide an upper bound on the eigenvalues counting function $N(\mathbb{R}^n,-\Delta+V,e)$ of a Sch\"odinger operator $-\Delta +V$ on $\mathbb{R}^n$ corresponding to a potential $V\in L^{\frac{n}{2}+\varepsilon}(\mathbb{R}^n,dx)$, in terms of the sum of the eigenvalues counting function of the Dirichlet integral $\mathcal{D}$ with Dirichlet boundary conditions on the subpotential domain $\{V< e\}$, endowed with weighted Lebesgue measure $(V-e)_-\cdot dx$ and the eigenvalues counting function of the absorption-to-reflection operator on the equipotential surface $\{V=e\}$.
Journal: Rend. Mat. Appl. (7). Volume 39 (2018), 257-276
Subjects: 81Q10
Keywords: eigenvalue counting function, upper bound, eigenvalues counting function, schrödinger operator, dirichlet boundary conditions
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1404.4325 [math-ph] (Published 2014-04-16)
On the spectrum of the discrete $1d$ Schrödinger operator with an arbitrary even potential
arXiv:math-ph/0204049 (Published 2002-04-26)
Quantum strips on surfaces
arXiv:math-ph/0503045 (Published 2005-03-17)
Upper bounds on the rate of quantum ergodicity