{ "id": "1909.02731", "version": "v1", "published": "2019-09-06T06:23:39.000Z", "updated": "2019-09-06T06:23:39.000Z", "title": "On the eigenvalue counting function for Schrödinger operator: some upper bounds", "authors": [ "Fabio E. G. Cipriani" ], "journal": "Rend. Mat. Appl. (7). Volume 39 (2018), 257-276", "categories": [ "math-ph", "math.AP", "math.FA", "math.MP" ], "abstract": "The aim of this work is to provide an upper bound on the eigenvalues counting function $N(\\mathbb{R}^n,-\\Delta+V,e)$ of a Sch\\\"odinger operator $-\\Delta +V$ on $\\mathbb{R}^n$ corresponding to a potential $V\\in L^{\\frac{n}{2}+\\varepsilon}(\\mathbb{R}^n,dx)$, in terms of the sum of the eigenvalues counting function of the Dirichlet integral $\\mathcal{D}$ with Dirichlet boundary conditions on the subpotential domain $\\{V< e\\}$, endowed with weighted Lebesgue measure $(V-e)_-\\cdot dx$ and the eigenvalues counting function of the absorption-to-reflection operator on the equipotential surface $\\{V=e\\}$.", "revisions": [ { "version": "v1", "updated": "2019-09-06T06:23:39.000Z" } ], "analyses": { "subjects": [ "81Q10" ], "keywords": [ "eigenvalue counting function", "upper bound", "eigenvalues counting function", "schrödinger operator", "dirichlet boundary conditions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }