arXiv Analytics

Sign in

arXiv:1909.01928 [math.NT]AbstractReferencesReviewsResources

Inhomogeneous Diophantine approximation over fields of formal power series

Yann Bugeaud, L. Singhal, Zhenliang Zhang

Published 2019-09-04Version 1

We prove a sharp analogue of Minkowski's inhomogeneous approximation theorem over fields of power series $\mathbb{F}_q((T^{-1}))$. Furthermore, we study the approximation to a given point $\underline{y}$ in $\mathbb{F}_q((T^{-1}))^2$ by the $SL_2(\mathbb{F}_q[T])$-orbit of a given point $\underline{x}$ in $\mathbb{F}_q((T^{-1}))^2$.

Related articles: Most relevant | Search more
arXiv:math/0405367 [math.NT] (Published 2004-05-19)
Specialisation and reduction of continued fractions of formal power series
arXiv:math/0406065 [math.NT] (Published 2004-06-03)
Exponents of inhomogeneous Diophantine Approximation
arXiv:0710.0399 [math.NT] (Published 2007-10-01)
Inhomogeneous Diophantine approximation of some Hurwitzian numbers