{ "id": "1909.01928", "version": "v1", "published": "2019-09-04T16:25:12.000Z", "updated": "2019-09-04T16:25:12.000Z", "title": "Inhomogeneous Diophantine approximation over fields of formal power series", "authors": [ "Yann Bugeaud", "L. Singhal", "Zhenliang Zhang" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "We prove a sharp analogue of Minkowski's inhomogeneous approximation theorem over fields of power series $\\mathbb{F}_q((T^{-1}))$. Furthermore, we study the approximation to a given point $\\underline{y}$ in $\\mathbb{F}_q((T^{-1}))^2$ by the $SL_2(\\mathbb{F}_q[T])$-orbit of a given point $\\underline{x}$ in $\\mathbb{F}_q((T^{-1}))^2$.", "revisions": [ { "version": "v1", "updated": "2019-09-04T16:25:12.000Z" } ], "analyses": { "subjects": [ "11J20", "11J61", "11J70" ], "keywords": [ "formal power series", "inhomogeneous diophantine approximation", "minkowskis inhomogeneous approximation theorem", "sharp analogue" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }