arXiv Analytics

Sign in

arXiv:1908.08432 [math.RT]AbstractReferencesReviewsResources

On the cohomology of line bundles over certain flag schemes II

Linyuan Liu, Patrick Polo

Published 2019-08-22Version 1

Over a field $K$ of characteristic $p$, let $Z$ be the incidence variety in $\mathbb{P}^d \times (\mathbb{P}^d)^*$ and let $\mathcal{L}$ be the restriction to $Z$ of the line bundle $\mathcal{O}(-n-d) \boxtimes \mathcal{O}(n)$, where $n = p+f$ with $0 \leq f \leq p-2$. We prove that $H^d(Z,\mathcal{L})$ is the simple $\operatorname{GL}_{d+1}$-module corresponding to the partition $\lambda_0 = (p-1+f,p-1,f+1)$. When $f= 0$, using the first author's description of $H^d(Z,\mathcal{L})$ and Jantzen's sum formula, we obtain as a by-product that the sum of the monomial symmetric functions $m_\lambda$, for all partitions $\lambda$ of $2p-1$ less than $(p-1,p-1,1)$ in the dominance order, is the alternating sum of the Schur functions $S_{p-1,p-1-i,1^{i+1}}$ for $i=0,\dots,p-2$.

Related articles: Most relevant | Search more
arXiv:math/0505371 [math.RT] (Published 2005-05-18)
A homological interpretation of Jantzen's sum formula
arXiv:2109.01972 [math.RT] (Published 2021-09-05)
Cohomology of weighted Rota-Baxter Lie algebras and Rota-Baxter paired operators
arXiv:1109.6637 [math.RT] (Published 2011-09-29)
Cohomology and support varieties for Lie superalgebras