{ "id": "1908.08432", "version": "v1", "published": "2019-08-22T15:08:35.000Z", "updated": "2019-08-22T15:08:35.000Z", "title": "On the cohomology of line bundles over certain flag schemes II", "authors": [ "Linyuan Liu", "Patrick Polo" ], "categories": [ "math.RT", "math.CO" ], "abstract": "Over a field $K$ of characteristic $p$, let $Z$ be the incidence variety in $\\mathbb{P}^d \\times (\\mathbb{P}^d)^*$ and let $\\mathcal{L}$ be the restriction to $Z$ of the line bundle $\\mathcal{O}(-n-d) \\boxtimes \\mathcal{O}(n)$, where $n = p+f$ with $0 \\leq f \\leq p-2$. We prove that $H^d(Z,\\mathcal{L})$ is the simple $\\operatorname{GL}_{d+1}$-module corresponding to the partition $\\lambda_0 = (p-1+f,p-1,f+1)$. When $f= 0$, using the first author's description of $H^d(Z,\\mathcal{L})$ and Jantzen's sum formula, we obtain as a by-product that the sum of the monomial symmetric functions $m_\\lambda$, for all partitions $\\lambda$ of $2p-1$ less than $(p-1,p-1,1)$ in the dominance order, is the alternating sum of the Schur functions $S_{p-1,p-1-i,1^{i+1}}$ for $i=0,\\dots,p-2$.", "revisions": [ { "version": "v1", "updated": "2019-08-22T15:08:35.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "14L15", "20G05" ], "keywords": [ "line bundle", "flag schemes", "cohomology", "monomial symmetric functions", "jantzens sum formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }