arXiv:1908.08425 [math.CA]AbstractReferencesReviewsResources
Lower bounds for the centered Hardy-Littlewood maximal operator on the real line
Published 2019-08-22Version 1
Let $1<p<\infty$. We prove that there exists an $\varepsilon_p>0$ such that for each $f\in L^p(\mathbb{R})$, the centered Hardy-Littlewood maximal operator $M$ on $\mathbb{R}$ satisfies the lower bound $\|Mf\|_{L^p(\mathbb{R})}\ge (1+\varepsilon_p)\|f\|_{L^p(\mathbb{R})}$.
Related articles: Most relevant | Search more
arXiv:1807.04399 [math.CA] (Published 2018-07-12)
Centered Hardy--Littlewood maximal operator on the real line: lower bounds
arXiv:1609.05585 [math.CA] (Published 2016-09-19)
A numerical point of view at the Gurov-Reshetnyak inequality on the real line
arXiv:2104.03497 [math.CA] (Published 2021-04-08)
The limiting weak type behaviors and The lower bound for a new weak $L\log L$ type norm of strong maximal operators