{ "id": "1908.08425", "version": "v1", "published": "2019-08-22T15:02:45.000Z", "updated": "2019-08-22T15:02:45.000Z", "title": "Lower bounds for the centered Hardy-Littlewood maximal operator on the real line", "authors": [ "F. J. Pérez Lázaro" ], "categories": [ "math.CA" ], "abstract": "Let $1
0$ such that for each $f\\in L^p(\\mathbb{R})$, the centered Hardy-Littlewood maximal operator $M$ on $\\mathbb{R}$ satisfies the lower bound $\\|Mf\\|_{L^p(\\mathbb{R})}\\ge (1+\\varepsilon_p)\\|f\\|_{L^p(\\mathbb{R})}$.", "revisions": [ { "version": "v1", "updated": "2019-08-22T15:02:45.000Z" } ], "analyses": { "subjects": [ "42B25" ], "keywords": [ "centered hardy-littlewood maximal operator", "lower bound", "real line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }