arXiv Analytics

Sign in

arXiv:1908.06202 [math.GN]AbstractReferencesReviewsResources

Uniqueness of the hyperspaces $C(p,X)$ in the class of trees

Florencio Corona-Vázquez, Russell Aarón Quiñones-Estrella, Javier Sánchez-Martínez, Rosemberg Toalá-Enríquez

Published 2019-08-16Version 1

Given a continuum $X$ and $p\in X$, we will consider the hyperspace $C(p,X)$ of all subcontinua of $X$ containing $p$. Given a family of continua $\mathcal{C}$, a continuum $X\in\mathcal{C}$ and $p\in X$, we say that $(X,p)$ has unique hyperspace $C(p,X)$ relative to $\mathcal{C}$ if for each $Y\in\mathcal{C}$ and $q\in Y$ such that $C(p,X)$ and $C(q,Y)$ are homeomorphic, then there is an homeomorphism between $X$ and $Y$ sending $p$ to $q$. In this paper we study some topological and geometric properties about the structure of $C(p,X)$ when $X$ is a tree, being the main result that $(X,p)$ has unique hyperspace $C(p,X)$ relative to the class of trees.

Comments: 17 pages
Categories: math.GN
Subjects: 54B05, 54B20, 54F65
Related articles: Most relevant | Search more
arXiv:1912.03411 [math.GN] (Published 2019-12-07)
About the uniqueness of the hyperspaces $C(p,X)$ in some classes of continua
arXiv:2501.01744 [math.GN] (Published 2025-01-03)
On the uniqueness of continuation of a partially defined metric
arXiv:math/0211215 [math.GN] (Published 2002-11-13, updated 2002-11-15)
On simultaneous linear extensions of partial (pseudo)metrics