{ "id": "1908.06202", "version": "v1", "published": "2019-08-16T22:56:49.000Z", "updated": "2019-08-16T22:56:49.000Z", "title": "Uniqueness of the hyperspaces $C(p,X)$ in the class of trees", "authors": [ "Florencio Corona-Vázquez", "Russell Aarón Quiñones-Estrella", "Javier Sánchez-Martínez", "Rosemberg Toalá-Enríquez" ], "comment": "17 pages", "categories": [ "math.GN" ], "abstract": "Given a continuum $X$ and $p\\in X$, we will consider the hyperspace $C(p,X)$ of all subcontinua of $X$ containing $p$. Given a family of continua $\\mathcal{C}$, a continuum $X\\in\\mathcal{C}$ and $p\\in X$, we say that $(X,p)$ has unique hyperspace $C(p,X)$ relative to $\\mathcal{C}$ if for each $Y\\in\\mathcal{C}$ and $q\\in Y$ such that $C(p,X)$ and $C(q,Y)$ are homeomorphic, then there is an homeomorphism between $X$ and $Y$ sending $p$ to $q$. In this paper we study some topological and geometric properties about the structure of $C(p,X)$ when $X$ is a tree, being the main result that $(X,p)$ has unique hyperspace $C(p,X)$ relative to the class of trees.", "revisions": [ { "version": "v1", "updated": "2019-08-16T22:56:49.000Z" } ], "analyses": { "subjects": [ "54B05", "54B20", "54F65" ], "keywords": [ "uniqueness", "unique hyperspace", "geometric properties", "main result" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }