arXiv Analytics

Sign in

arXiv:1908.01326 [math.AP]AbstractReferencesReviewsResources

On the Kirchhoff type equations in $\mathbb{R}^{N}$

Juntao Sun, Tsung-Fang Wu

Published 2019-08-04Version 1

Consider a nonlinear Kirchhoff type equation as follows \begin{equation*} \left\{ \begin{array}{ll} -\left( a\int_{\mathbb{R}^{N}}|\nabla u|^{2}dx+b\right) \Delta u+u=f(x)\left\vert u\right\vert ^{p-2}u & \text{ in }\mathbb{R}^{N}, \\ u\in H^{1}(\mathbb{R}^{N}), & \end{array}% \right. \end{equation*}% where $N\geq 1,a,b>0,2<p<\min \left\{ 4,2^{\ast }\right\}$($2^{\ast }=\infty $ for $N=1,2$ and $2^{\ast }=2N/(N-2)$ for $N\geq 3)$ and the function $f\in C(\mathbb{R}^{N})\cap L^{\infty }(\mathbb{R}^{N})$. Distinguishing from the existing results in the literature, we are more interested in the geometric properties of the energy functional related to the above problem. Furthermore, the nonexistence, existence, unique and multiplicity of positive solutions are proved dependent on the parameter $a$ and the dimension $N.$ In particular, we conclude that a unique positive solution exists for $1\leq N\leq4$ while at least two positive solutions are permitted for $N\geq5$.

Related articles: Most relevant | Search more
arXiv:1207.6480 [math.AP] (Published 2012-07-27, updated 2017-03-23)
Flat solutions of the 1-Laplacian equation
arXiv:0805.3869 [math.AP] (Published 2008-05-26, updated 2009-01-10)
Gamma convergence of an energy functional related to the fractional Laplacian
arXiv:2102.08714 [math.AP] (Published 2021-02-17)
Some geometric properties of nonparametric $μ$-surfaces in $\mathbb{R}^3$