{ "id": "1908.01326", "version": "v1", "published": "2019-08-04T12:23:29.000Z", "updated": "2019-08-04T12:23:29.000Z", "title": "On the Kirchhoff type equations in $\\mathbb{R}^{N}$", "authors": [ "Juntao Sun", "Tsung-Fang Wu" ], "comment": "42 pages", "categories": [ "math.AP" ], "abstract": "Consider a nonlinear Kirchhoff type equation as follows \\begin{equation*} \\left\\{ \\begin{array}{ll} -\\left( a\\int_{\\mathbb{R}^{N}}|\\nabla u|^{2}dx+b\\right) \\Delta u+u=f(x)\\left\\vert u\\right\\vert ^{p-2}u & \\text{ in }\\mathbb{R}^{N}, \\\\ u\\in H^{1}(\\mathbb{R}^{N}), & \\end{array}% \\right. \\end{equation*}% where $N\\geq 1,a,b>0,2