arXiv Analytics

Sign in

arXiv:1907.12694 [math.PR]AbstractReferencesReviewsResources

Diffusive bounds for the critical density of activated random walks

Amine Asselah, Leonardo T. Rolla, Bruno Schapira

Published 2019-07-30Version 1

We consider symmetric activated random walks on $\mathbb{Z}$, and show that the critical density $\zeta_c$ satisfies $c\sqrt{\lambda} \leq \zeta_c(\lambda) \leq C \sqrt{\lambda}$ where $\lambda$ denotes the sleep rate.

Related articles: Most relevant | Search more
arXiv:1512.02397 [math.PR] (Published 2015-12-08)
Critical density of activated random walks on $\mathbb{Z}^d$ and general graphs
arXiv:1707.06081 [math.PR] (Published 2017-07-19)
Critical Density for Activated Random Walks
arXiv:1501.07258 [math.PR] (Published 2015-01-28)
The divisible sandpile at critical density