{ "id": "1907.12694", "version": "v1", "published": "2019-07-30T00:38:44.000Z", "updated": "2019-07-30T00:38:44.000Z", "title": "Diffusive bounds for the critical density of activated random walks", "authors": [ "Amine Asselah", "Leonardo T. Rolla", "Bruno Schapira" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider symmetric activated random walks on $\\mathbb{Z}$, and show that the critical density $\\zeta_c$ satisfies $c\\sqrt{\\lambda} \\leq \\zeta_c(\\lambda) \\leq C \\sqrt{\\lambda}$ where $\\lambda$ denotes the sleep rate.", "revisions": [ { "version": "v1", "updated": "2019-07-30T00:38:44.000Z" } ], "analyses": { "keywords": [ "critical density", "diffusive bounds", "symmetric activated random walks", "sleep rate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }