arXiv Analytics

Sign in

arXiv:1907.10379 [math.PR]AbstractReferencesReviewsResources

Asymptotic Independence ex machina -- Extreme Value Theory for the Diagonal BEKK-ARCH(1) Model

Sebastian Mentemeier, Olivier Wintenberger

Published 2019-07-24Version 1

We consider multivariate stationary processes $(\boldsymbol{X}_t)$, satisfying a stochastic recurrence equation of the form $$ \boldsymbol{X}_t= \boldsymbol{m}M_t \boldsymbol{X}_{t-1} + \boldsymbol{Q}_t,$$ where $(M_t)$ and $(\boldsymbol{Q}_t)$ are iid random variables and random vectors, respectively, and $\boldsymbol{m}=\mathrm{diag}(m_1, \dots, m_d)$ is a deterministic diagonal matrix. We obtain a full characterization of the multivariate regular variation properties of $(\boldsymbol{X}_t)$, proving that coordinates $X_{t,i}$ and $X_{t,j}$ are asymptotically independent if and only if $m_i \neq m_j$; even though all coordinates rely on the same random input $(M_t)$. We describe extremal properties of $(\boldsymbol{X}_t)$ in the framework of vector scaling regular variation. Our results are applied to multivariate autoregressive conditional heteroskedasticity (ARCH) processes.

Related articles: Most relevant | Search more
arXiv:1910.04243 [math.PR] (Published 2019-10-09)
Remarks on asymptotic independence
arXiv:0905.4438 [math.PR] (Published 2009-05-27)
Extreme value theory, Poisson-Dirichlet distributions and FPP on random networks
arXiv:0912.4331 [math.PR] (Published 2009-12-22)
Asymptotic independence for unimodal densities