{ "id": "1907.10379", "version": "v1", "published": "2019-07-24T12:13:36.000Z", "updated": "2019-07-24T12:13:36.000Z", "title": "Asymptotic Independence ex machina -- Extreme Value Theory for the Diagonal BEKK-ARCH(1) Model", "authors": [ "Sebastian Mentemeier", "Olivier Wintenberger" ], "categories": [ "math.PR" ], "abstract": "We consider multivariate stationary processes $(\\boldsymbol{X}_t)$, satisfying a stochastic recurrence equation of the form $$ \\boldsymbol{X}_t= \\boldsymbol{m}M_t \\boldsymbol{X}_{t-1} + \\boldsymbol{Q}_t,$$ where $(M_t)$ and $(\\boldsymbol{Q}_t)$ are iid random variables and random vectors, respectively, and $\\boldsymbol{m}=\\mathrm{diag}(m_1, \\dots, m_d)$ is a deterministic diagonal matrix. We obtain a full characterization of the multivariate regular variation properties of $(\\boldsymbol{X}_t)$, proving that coordinates $X_{t,i}$ and $X_{t,j}$ are asymptotically independent if and only if $m_i \\neq m_j$; even though all coordinates rely on the same random input $(M_t)$. We describe extremal properties of $(\\boldsymbol{X}_t)$ in the framework of vector scaling regular variation. Our results are applied to multivariate autoregressive conditional heteroskedasticity (ARCH) processes.", "revisions": [ { "version": "v1", "updated": "2019-07-24T12:13:36.000Z" } ], "analyses": { "keywords": [ "extreme value theory", "asymptotic independence", "diagonal bekk-arch", "multivariate regular variation properties", "multivariate stationary processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }