arXiv:1907.08814 [math.AP]AbstractReferencesReviewsResources
Sobolev versus Hölder minimizers for the degenerate fractional $p$-Laplacian
Antonio Iannizzotto, Sunra Mosconi, Marco Squassina
Published 2019-07-20Version 1
We consider a nonlinear pseudo-differential equation driven by the fractional $p$-Laplacian $(-\Delta)^s_p$ with $s\in(0,1)$ and $p\ge 2$ (degenerate case), under Dirichlet type conditions in a smooth domain $\Omega$. We prove that local minimizers of the associated energy functional in the fractional Sobolev space $W^{s,p}_0(\Omega)$ and in the weighted H\"older space $C^0_s(\overline\Omega)$, respectively, do coincide.
Comments: 14 pages
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1807.09497 [math.AP] (Published 2018-07-25)
Fine boundary regularity for the degenerate fractional $p$-Laplacian
arXiv:2305.19965 [math.AP] (Published 2023-05-31)
A clustering theorem in fractional Sobolev spaces
arXiv:2404.12053 [math.AP] (Published 2024-04-18)
Regularity results for Hölder minimizers to functionals with non-standard growth