{ "id": "1907.08814", "version": "v1", "published": "2019-07-20T13:52:36.000Z", "updated": "2019-07-20T13:52:36.000Z", "title": "Sobolev versus Hölder minimizers for the degenerate fractional $p$-Laplacian", "authors": [ "Antonio Iannizzotto", "Sunra Mosconi", "Marco Squassina" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We consider a nonlinear pseudo-differential equation driven by the fractional $p$-Laplacian $(-\\Delta)^s_p$ with $s\\in(0,1)$ and $p\\ge 2$ (degenerate case), under Dirichlet type conditions in a smooth domain $\\Omega$. We prove that local minimizers of the associated energy functional in the fractional Sobolev space $W^{s,p}_0(\\Omega)$ and in the weighted H\\\"older space $C^0_s(\\overline\\Omega)$, respectively, do coincide.", "revisions": [ { "version": "v1", "updated": "2019-07-20T13:52:36.000Z" } ], "analyses": { "subjects": [ "35D10", "35R11", "47G20" ], "keywords": [ "degenerate fractional", "hölder minimizers", "nonlinear pseudo-differential equation driven", "fractional sobolev space", "dirichlet type conditions" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }