arXiv Analytics

Sign in

arXiv:1907.06936 [math.GR]AbstractReferencesReviewsResources

Graphs with large girth and free groups

Ofir David

Published 2019-07-16Version 1

We use Margulis' construction together with lattice counting arguments to build Cayley graphs on $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right),\;p\to\infty$ which are d-regular graphs with girth $\geq\frac{2}{3}\frac{\ln\left(n\right)}{\ln\left(d-1\right)+\ln\left(C\right)}$ for some absolute constant C.

Comments: 3 figures, 14 pages
Categories: math.GR, math.CO
Subjects: 05C25, 20E05, 14H30
Related articles: Most relevant | Search more
arXiv:1907.05968 [math.GR] (Published 2019-07-12)
Local to global property in free groups
arXiv:math/0610880 [math.GR] (Published 2006-10-28)
Algebraic extensions in free groups
arXiv:2006.00989 [math.GR] (Published 2020-06-01)
Linking of letters and the lower central series of free groups