{ "id": "1907.06936", "version": "v1", "published": "2019-07-16T10:59:19.000Z", "updated": "2019-07-16T10:59:19.000Z", "title": "Graphs with large girth and free groups", "authors": [ "Ofir David" ], "comment": "3 figures, 14 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "We use Margulis' construction together with lattice counting arguments to build Cayley graphs on $\\mathrm{SL}_{2}\\left(\\mathbb{F}_{p}\\right),\\;p\\to\\infty$ which are d-regular graphs with girth $\\geq\\frac{2}{3}\\frac{\\ln\\left(n\\right)}{\\ln\\left(d-1\\right)+\\ln\\left(C\\right)}$ for some absolute constant C.", "revisions": [ { "version": "v1", "updated": "2019-07-16T10:59:19.000Z" } ], "analyses": { "subjects": [ "05C25", "20E05", "14H30" ], "keywords": [ "free groups", "large girth", "build cayley graphs", "absolute constant", "d-regular graphs" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }