arXiv Analytics

Sign in

arXiv:1907.06395 [math.FA]AbstractReferencesReviewsResources

Lifting for manifold-valued maps of bounded variation

Giacomo Canevari, Giandomenico Orlandi

Published 2019-07-15Version 1

Let $\mathcal{N}$ be a smooth, compact, connected Riemannian manifold without boundary. Let $\mathcal{E}\to\mathcal{N}$ be the Riemannian universal covering of $\mathcal{N}$. For any bounded, smooth domain $\Omega\subseteq\mathbb{R}^d$ and any $u\in\mathrm{BV}(\Omega, \, \mathcal{N})$, we show that $u$ has a lifting $v\in\mathrm{BV}(\Omega, \, \mathcal{E})$. Our result proves a conjecture by Bethuel and Chiron.

Related articles: Most relevant | Search more
arXiv:2505.02053 [math.FA] (Published 2025-05-04)
An atomic decomposition for functions of bounded variation
arXiv:2006.07181 [math.FA] (Published 2020-06-12)
On functions of bounded variation on convex domains in Hilbert spaces
arXiv:1808.09711 [math.FA] (Published 2018-08-29)
Fine properties of functions with bounded variation in Carnot-Carathéodory spaces