{ "id": "1907.06395", "version": "v1", "published": "2019-07-15T09:45:05.000Z", "updated": "2019-07-15T09:45:05.000Z", "title": "Lifting for manifold-valued maps of bounded variation", "authors": [ "Giacomo Canevari", "Giandomenico Orlandi" ], "comment": "15 pages, 2 figures", "categories": [ "math.FA", "math.AP" ], "abstract": "Let $\\mathcal{N}$ be a smooth, compact, connected Riemannian manifold without boundary. Let $\\mathcal{E}\\to\\mathcal{N}$ be the Riemannian universal covering of $\\mathcal{N}$. For any bounded, smooth domain $\\Omega\\subseteq\\mathbb{R}^d$ and any $u\\in\\mathrm{BV}(\\Omega, \\, \\mathcal{N})$, we show that $u$ has a lifting $v\\in\\mathrm{BV}(\\Omega, \\, \\mathcal{E})$. Our result proves a conjecture by Bethuel and Chiron.", "revisions": [ { "version": "v1", "updated": "2019-07-15T09:45:05.000Z" } ], "analyses": { "keywords": [ "bounded variation", "manifold-valued maps", "smooth domain", "connected riemannian manifold", "riemannian universal covering" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }