arXiv Analytics

Sign in

arXiv:1907.05734 [math.CA]AbstractReferencesReviewsResources

Averages along the Square Integers: $\ell^p$ improving and Sparse Inequalities

Rui Han, Michael T Lacey, Fan Yang

Published 2019-07-12Version 1

Let $f\in \ell^2(\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\frac{1}{N}\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \ell ^{p}$-improving estimate, for $ 3/2 < p \leq 2$: \begin{equation*} N ^{-2/p'} \lVert A_N f \rVert _{ p'} \lesssim N ^{-2/p} \lVert f\rVert _{\ell ^{p}}, \end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \sup _{N\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.

Related articles: Most relevant | Search more
arXiv:0902.2513 [math.CA] (Published 2009-02-15, updated 2011-01-25)
An extension of an inequality for ratios of gamma functions
arXiv:0905.1426 [math.CA] (Published 2009-05-09, updated 2011-01-09)
Polarization of an inequality
arXiv:2307.10417 [math.CA] (Published 2023-07-19)
Pointwise estimates for rough operators with applications to Sobolev inequalities