{ "id": "1907.05734", "version": "v1", "published": "2019-07-12T13:22:17.000Z", "updated": "2019-07-12T13:22:17.000Z", "title": "Averages along the Square Integers: $\\ell^p$ improving and Sparse Inequalities", "authors": [ "Rui Han", "Michael T Lacey", "Fan Yang" ], "comment": "27 pages", "categories": [ "math.CA" ], "abstract": "Let $f\\in \\ell^2(\\mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=\\frac{1}{N}\\sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ \\ell ^{p}$-improving estimate, for $ 3/2 < p \\leq 2$: \\begin{equation*} N ^{-2/p'} \\lVert A_N f \\rVert _{ p'} \\lesssim N ^{-2/p} \\lVert f\\rVert _{\\ell ^{p}}, \\end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p' =\\frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = \\sup _{N\\geq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.", "revisions": [ { "version": "v1", "updated": "2019-07-12T13:22:17.000Z" } ], "analyses": { "keywords": [ "inequality", "square integers", "sparse inequalities", "similar sparse bound", "square roots" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }