arXiv:1906.10001 [math.NT]AbstractReferencesReviewsResources
On a problem of de Koninck
Published 2019-06-24Version 1
Let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\neq 1, 1782$ and $\sigma(n)=(\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \ldots, k)$ such that $p, p^\prime\mid\mid n$, $q_i^2\mid\mid n (i=1, 2, \ldots, k)$ and $q_1\mid \sigma(p^2), q_{i+1}\mid\sigma(q_i^2) (i=1, 2, \ldots, k-1), p^\prime \mid\sigma(q_k^2)$.
Comments: 15 pages
Related articles: Most relevant | Search more
arXiv:1105.1621 [math.NT] (Published 2011-05-09)
The equation $ω(n)=ω(n+1)$
arXiv:2012.11837 [math.NT] (Published 2020-12-22)
A summation of the number of distinct prime divisors of the lcm
arXiv:1706.07009 [math.NT] (Published 2017-06-21)
An improvement of an inequality of Ochem and Rao concerning odd perfect numbers