{ "id": "1906.10001", "version": "v1", "published": "2019-06-24T14:46:45.000Z", "updated": "2019-06-24T14:46:45.000Z", "title": "On a problem of de Koninck", "authors": [ "Tomohiro Yamada" ], "comment": "15 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $\\sigma(n)$ and $\\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\\neq 1, 1782$ and $\\sigma(n)=(\\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \\ldots, k)$ such that $p, p^\\prime\\mid\\mid n$, $q_i^2\\mid\\mid n (i=1, 2, \\ldots, k)$ and $q_1\\mid \\sigma(p^2), q_{i+1}\\mid\\sigma(q_i^2) (i=1, 2, \\ldots, k-1), p^\\prime \\mid\\sigma(q_k^2)$.", "revisions": [ { "version": "v1", "updated": "2019-06-24T14:46:45.000Z" } ], "analyses": { "subjects": [ "05C20", "11A05", "11A25", "11A41" ], "keywords": [ "distinct prime divisors", "necessarily distinct", "necessarily odd" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }