arXiv:1906.09347 [math.PR]AbstractReferencesReviewsResources
Logarithmic asymptotics for probability of component-wise ruin in two-dimensional Brownian model
Krzysztof Debicki, Lanpeng Ji, Tomasz Rolski
Published 2019-06-21Version 1
Let ${\bf X}({\bf t})=(X_1(t),X_2(s)), {\bf t}=(t,s)$ be a correlated two-dimensional Brownian motion and let $\mu_1,\mu_2>0$ be two constants. In this contribution, we derive the logarithmic asymptotics \[ \log P\Bigl( \sup_{t\ge 0} \Bigl( X_1(t) - \mu_1 t\Bigr)> u, \ \sup_{s\ge 0} \Bigl( X_2(s) - \mu_2 s\Bigr)> u \Bigr),\qquad u\to\infty. \]
Comments: 17
Categories: math.PR
Related articles: Most relevant | Search more
The probability of the Alabama paradox
Quasipotential and logarithmic asymptotics of the Green's measures
How to Lose with Least Probability