arXiv Analytics

Sign in

arXiv:1906.09347 [math.PR]AbstractReferencesReviewsResources

Logarithmic asymptotics for probability of component-wise ruin in two-dimensional Brownian model

Krzysztof Debicki, Lanpeng Ji, Tomasz Rolski

Published 2019-06-21Version 1

Let ${\bf X}({\bf t})=(X_1(t),X_2(s)), {\bf t}=(t,s)$ be a correlated two-dimensional Brownian motion and let $\mu_1,\mu_2>0$ be two constants. In this contribution, we derive the logarithmic asymptotics \[ \log P\Bigl( \sup_{t\ge 0} \Bigl( X_1(t) - \mu_1 t\Bigr)> u, \ \sup_{s\ge 0} \Bigl( X_2(s) - \mu_2 s\Bigr)> u \Bigr),\qquad u\to\infty. \]

Related articles: Most relevant | Search more
arXiv:1104.2137 [math.PR] (Published 2011-04-12, updated 2011-12-19)
The probability of the Alabama paradox
arXiv:math/0610040 [math.PR] (Published 2006-10-01, updated 2006-10-12)
Quasipotential and logarithmic asymptotics of the Green's measures
arXiv:1112.2117 [math.PR] (Published 2011-12-09, updated 2011-12-13)
How to Lose with Least Probability