{ "id": "1906.09347", "version": "v1", "published": "2019-06-21T22:17:13.000Z", "updated": "2019-06-21T22:17:13.000Z", "title": "Logarithmic asymptotics for probability of component-wise ruin in two-dimensional Brownian model", "authors": [ "Krzysztof Debicki", "Lanpeng Ji", "Tomasz Rolski" ], "comment": "17", "categories": [ "math.PR" ], "abstract": "Let ${\\bf X}({\\bf t})=(X_1(t),X_2(s)), {\\bf t}=(t,s)$ be a correlated two-dimensional Brownian motion and let $\\mu_1,\\mu_2>0$ be two constants. In this contribution, we derive the logarithmic asymptotics \\[ \\log P\\Bigl( \\sup_{t\\ge 0} \\Bigl( X_1(t) - \\mu_1 t\\Bigr)> u, \\ \\sup_{s\\ge 0} \\Bigl( X_2(s) - \\mu_2 s\\Bigr)> u \\Bigr),\\qquad u\\to\\infty. \\]", "revisions": [ { "version": "v1", "updated": "2019-06-21T22:17:13.000Z" } ], "analyses": { "keywords": [ "two-dimensional brownian model", "logarithmic asymptotics", "component-wise ruin", "probability", "correlated two-dimensional brownian motion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }