arXiv Analytics

Sign in

arXiv:1906.04069 [math.PR]AbstractReferencesReviewsResources

Stochastic PDE limit of the dynamic ASEP

Ivan Corwin, Promit Ghosal, Konstantin Matetski

Published 2019-06-10Version 1

We study a stochastic PDE limit of the height function of the dynamic asymmetric simple exclusion process (dynamic ASEP). A degeneration of the stochastic Interaction Round-a-Face (IRF) model of arXiv:1701.05239, dynamic ASEP has a jump parameter $q\in (0,1)$ and a dynamical parameter $\alpha>0$. It degenerates to the standard ASEP height function when $\alpha$ goes to $0$ or $\infty$. We consider very weakly asymmetric scaling, i.e., for $\varepsilon$ tending to zero we set $q=e^{-\varepsilon}$ and look at fluctuations, space and time in the scales $\varepsilon^{-1}$, $\varepsilon^{-2}$ and $\varepsilon^{-4}$. We show that under such scaling the height function of the dynamic ASEP converges to the solution of the space-time Ornstein-Uhlenbeck process. We also introduce the dynamic ASEP on a ring with generalized rate functions. Under the very weakly asymmetric scaling, we show that the dynamic ASEP (with generalized jump rates) on a ring also converges to the solution of the space-time Ornstein-Uhlenbeck process on $[0,1]$ with periodic boundary conditions.

Related articles:
arXiv:2408.15785 [math.PR] (Published 2024-08-28)
Asymptotics of dynamic ASEP using duality
arXiv:1803.08120 [math.PR] (Published 2018-03-21, updated 2019-03-13)
Stochastic PDE Limit of the Six Vertex Model
arXiv:1705.01980 [math.PR] (Published 2017-05-04)
Dynamic ASEP, duality and continuous $q^{-1}$-Hermite polynomials