{ "id": "1906.04069", "version": "v1", "published": "2019-06-10T15:20:42.000Z", "updated": "2019-06-10T15:20:42.000Z", "title": "Stochastic PDE limit of the dynamic ASEP", "authors": [ "Ivan Corwin", "Promit Ghosal", "Konstantin Matetski" ], "comment": "60 pages, 1 figure", "categories": [ "math.PR", "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "We study a stochastic PDE limit of the height function of the dynamic asymmetric simple exclusion process (dynamic ASEP). A degeneration of the stochastic Interaction Round-a-Face (IRF) model of arXiv:1701.05239, dynamic ASEP has a jump parameter $q\\in (0,1)$ and a dynamical parameter $\\alpha>0$. It degenerates to the standard ASEP height function when $\\alpha$ goes to $0$ or $\\infty$. We consider very weakly asymmetric scaling, i.e., for $\\varepsilon$ tending to zero we set $q=e^{-\\varepsilon}$ and look at fluctuations, space and time in the scales $\\varepsilon^{-1}$, $\\varepsilon^{-2}$ and $\\varepsilon^{-4}$. We show that under such scaling the height function of the dynamic ASEP converges to the solution of the space-time Ornstein-Uhlenbeck process. We also introduce the dynamic ASEP on a ring with generalized rate functions. Under the very weakly asymmetric scaling, we show that the dynamic ASEP (with generalized jump rates) on a ring also converges to the solution of the space-time Ornstein-Uhlenbeck process on $[0,1]$ with periodic boundary conditions.", "revisions": [ { "version": "v1", "updated": "2019-06-10T15:20:42.000Z" } ], "analyses": { "keywords": [ "dynamic asep", "stochastic pde limit", "space-time ornstein-uhlenbeck process", "dynamic asymmetric simple exclusion process", "standard asep height function" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable" } } }