arXiv Analytics

Sign in

arXiv:1906.01556 [math.AP]AbstractReferencesReviewsResources

A Note on Estimates for Elliptic Systems with $L^1$ Data

Bogdan Raiţă, Daniel Spector

Published 2019-06-04Version 1

In this paper we give necessary and sufficient conditions on the compatibility of a $k$th order homogeneous linear elliptic differential operator $\mathbb{A}$ and differential constraint $\mathcal{C}$ for solutions of \begin{align*} \mathbb{A} u=f\quad\text{subject to}\quad \mathcal{C} f=0\quad\text{ in }\mathbb{R}^n \end{align*} to satisfy the estimates \begin{align*} \|D^{k-j}u\|_{L^{\frac{n}{n-j}}(\mathbb{R}^n)}\leq c\|f\|_{L^1(\mathbb{R}^n)} \end{align*} for $j\in \{1,\ldots,\min\{k,n-1\}\}$ and \begin{align*} \|D^{k-n}u\|_{L^{\infty}(\mathbb{R}^n)}\leq c\|f\|_{L^1(\mathbb{R}^n)} \end{align*} when $k\geq n$.

Related articles: Most relevant | Search more
arXiv:1409.2614 [math.AP] (Published 2014-09-09)
On the $L^p$-Poisson semigroup associated with elliptic systems
arXiv:1311.0694 [math.AP] (Published 2013-11-04)
Blowup solutions of elliptic systems in two dimensional spaces
arXiv:1011.3874 [math.AP] (Published 2010-11-17, updated 2014-01-17)
Elliptic systems with measurable coefficients of the type of Lamé system in three dimensions