{ "id": "1906.01556", "version": "v1", "published": "2019-06-04T16:17:35.000Z", "updated": "2019-06-04T16:17:35.000Z", "title": "A Note on Estimates for Elliptic Systems with $L^1$ Data", "authors": [ "Bogdan Raiţă", "Daniel Spector" ], "comment": "8 pages", "categories": [ "math.AP", "math.CA", "math.FA" ], "abstract": "In this paper we give necessary and sufficient conditions on the compatibility of a $k$th order homogeneous linear elliptic differential operator $\\mathbb{A}$ and differential constraint $\\mathcal{C}$ for solutions of \\begin{align*} \\mathbb{A} u=f\\quad\\text{subject to}\\quad \\mathcal{C} f=0\\quad\\text{ in }\\mathbb{R}^n \\end{align*} to satisfy the estimates \\begin{align*} \\|D^{k-j}u\\|_{L^{\\frac{n}{n-j}}(\\mathbb{R}^n)}\\leq c\\|f\\|_{L^1(\\mathbb{R}^n)} \\end{align*} for $j\\in \\{1,\\ldots,\\min\\{k,n-1\\}\\}$ and \\begin{align*} \\|D^{k-n}u\\|_{L^{\\infty}(\\mathbb{R}^n)}\\leq c\\|f\\|_{L^1(\\mathbb{R}^n)} \\end{align*} when $k\\geq n$.", "revisions": [ { "version": "v1", "updated": "2019-06-04T16:17:35.000Z" } ], "analyses": { "keywords": [ "elliptic systems", "order homogeneous linear elliptic differential", "th order homogeneous linear elliptic", "homogeneous linear elliptic differential operator", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }