arXiv Analytics

Sign in

arXiv:1905.00624 [math.CO]AbstractReferencesReviewsResources

The critical window in random digraphs

Matthew Coulson

Published 2019-05-02Version 1

We consider the component structure of the random digraph $D(n,p)$ inside the critical window $p = n^{-1} + \lambda n^{-4/3}$.We show that the largest component $\mathcal{C}_1$ has size of order $n^{1/3}$ in this range. In particular we give explicit bounds on the tail probabilities of $|\mathcal{C}_1|n^{-1/3}$.

Related articles: Most relevant | Search more
arXiv:1605.05764 [math.CO] (Published 2016-05-18)
Packing arborescences in random digraphs
arXiv:1208.3276 [math.CO] (Published 2012-08-16, updated 2014-09-23)
The critical window for the classical Ramsey-TurĂ¡n problem
arXiv:1302.2446 [math.CO] (Published 2013-02-11, updated 2014-11-11)
Degree sequences of random digraphs and bipartite graphs