{ "id": "1905.00624", "version": "v1", "published": "2019-05-02T08:59:05.000Z", "updated": "2019-05-02T08:59:05.000Z", "title": "The critical window in random digraphs", "authors": [ "Matthew Coulson" ], "comment": "21 pages", "categories": [ "math.CO", "math.PR" ], "abstract": "We consider the component structure of the random digraph $D(n,p)$ inside the critical window $p = n^{-1} + \\lambda n^{-4/3}$.We show that the largest component $\\mathcal{C}_1$ has size of order $n^{1/3}$ in this range. In particular we give explicit bounds on the tail probabilities of $|\\mathcal{C}_1|n^{-1/3}$.", "revisions": [ { "version": "v1", "updated": "2019-05-02T08:59:05.000Z" } ], "analyses": { "keywords": [ "random digraph", "critical window", "component structure", "largest component" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }