arXiv Analytics

Sign in

arXiv:1904.07808 [math.CO]AbstractReferencesReviewsResources

An Asymptotic Form of the Generating Function $\prod_{k=1}^\infty (1+x^k/k)$

Andreas B. G. Blobel

Published 2019-04-15Version 1

It is shown that the sequence of rational numbers $r(k)$ generated by the ordinary generating function $\prod_{k=1}^\infty (1+x^k/k)$ converges to a limit $C > 0$. $C$ can be expressed as $C = \exp\Bigl(-\sum_{k = 2}^\infty \frac{(-1)^k}{k}\ \zeta(k) \Bigr)$ where $\zeta()$ denotes the Riemann zeta function.

Related articles: Most relevant | Search more
arXiv:0811.0042 [math.CO] (Published 2008-10-31)
Summation of Hyperharmonic Series
arXiv:1212.4187 [math.CO] (Published 2012-12-17)
Density theorems for rational numbers
arXiv:math/0605104 [math.CO] (Published 2006-05-03)
Asymptotics for the number of n-quasigroups of order 4