{ "id": "1904.07808", "version": "v1", "published": "2019-04-15T14:34:10.000Z", "updated": "2019-04-15T14:34:10.000Z", "title": "An Asymptotic Form of the Generating Function $\\prod_{k=1}^\\infty (1+x^k/k)$", "authors": [ "Andreas B. G. Blobel" ], "comment": "9 pages, 1 figure", "categories": [ "math.CO", "math.NT" ], "abstract": "It is shown that the sequence of rational numbers $r(k)$ generated by the ordinary generating function $\\prod_{k=1}^\\infty (1+x^k/k)$ converges to a limit $C > 0$. $C$ can be expressed as $C = \\exp\\Bigl(-\\sum_{k = 2}^\\infty \\frac{(-1)^k}{k}\\ \\zeta(k) \\Bigr)$ where $\\zeta()$ denotes the Riemann zeta function.", "revisions": [ { "version": "v1", "updated": "2019-04-15T14:34:10.000Z" } ], "analyses": { "keywords": [ "asymptotic form", "riemann zeta function", "rational numbers", "ordinary generating function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }