arXiv:1904.03946 [math.AP]AbstractReferencesReviewsResources
Metric characterization of the sum of fractional Sobolev spaces
Rémy Rodiac, Jean Van Schaftingen
Published 2019-04-08Version 1
We introduce a non-linear criterion which allows us to determine when a function can be written as a sum of functions belonging to homogeneous fractional spaces: for $\ell \in \mathbb{N}^*$, $s_i\in (0, 1)$ and $p_i \in [1, +\infty)$, $u : \Omega \to \mathbb{R}$ can be decomposed as $u = u_1+\dotsc+u_\ell$ with $u_i \in \dot{W}^{s_i,p_i}(\Omega)$ if and only if $$ \iint\limits_{\Omega \times \Omega} \min_{1 \le i \le \ell} \frac{|u (x) - u (y)|^{p_i}}{|x - y|^{n+s_ip_i}}\,\mathrm{d}x \,\mathrm{d}y <+\infty. $$
Comments: 19 pages
Subjects: 46E35
Related articles: Most relevant | Search more
arXiv:1903.07420 [math.AP] (Published 2019-03-18)
Coarea formulae and chain rules for the Jacobian determinant in fractional Sobolev spaces
arXiv:1701.04425 [math.AP] (Published 2017-01-16)
A note on truncations in fractional Sobolev spaces
arXiv:1808.07190 [math.AP] (Published 2018-08-22)
The distributional hyper-Jacobian determinants in fractional Sobolev spaces