{ "id": "1904.03946", "version": "v1", "published": "2019-04-08T10:59:03.000Z", "updated": "2019-04-08T10:59:03.000Z", "title": "Metric characterization of the sum of fractional Sobolev spaces", "authors": [ "Rémy Rodiac", "Jean Van Schaftingen" ], "comment": "19 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "We introduce a non-linear criterion which allows us to determine when a function can be written as a sum of functions belonging to homogeneous fractional spaces: for $\\ell \\in \\mathbb{N}^*$, $s_i\\in (0, 1)$ and $p_i \\in [1, +\\infty)$, $u : \\Omega \\to \\mathbb{R}$ can be decomposed as $u = u_1+\\dotsc+u_\\ell$ with $u_i \\in \\dot{W}^{s_i,p_i}(\\Omega)$ if and only if $$ \\iint\\limits_{\\Omega \\times \\Omega} \\min_{1 \\le i \\le \\ell} \\frac{|u (x) - u (y)|^{p_i}}{|x - y|^{n+s_ip_i}}\\,\\mathrm{d}x \\,\\mathrm{d}y <+\\infty. $$", "revisions": [ { "version": "v1", "updated": "2019-04-08T10:59:03.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "fractional sobolev spaces", "metric characterization", "non-linear criterion", "homogeneous fractional spaces" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }