arXiv Analytics

Sign in

arXiv:1904.02248 [math.NT]AbstractReferencesReviewsResources

A $t$-motivic interpretation of shuffle relations for multizeta values

Wei-Cheng Huang

Published 2019-04-03Version 1

Thakur (2010) showed that, for $r,$ $s\in \mathbb{N}$, a product of two Carlitz zeta values $\zeta_A(r)$ and $\zeta_A(s)$ can be expressed as an $\mathbb{F}_p$-linear combination of $\zeta_A(r+s)$ and double zeta values of weight $r+s$. Such an expression is called shuffle relation by Thakur. Fixing $r,$ $s\in \mathbb{N}$, we construct a $t$-module $E'$. To determine whether an $(r+s)$-tuple $\mathfrak{C}$ in $\mathbb{F}_q(\theta)^{r+s}$ gives a shuffle relation, we relate it to the $\mathbb{F}_q[t]$-torsion property of the point $\mathbf{v}_\mathfrak{C}\in E'(\mathbb{F}_q[\theta])$ constructed with respect to the given $(r+s)$-tuple $\mathfrak{C}$. We also provide an effective criterion for deciding the $\mathbb{F}_q[t]$-torsion property of the point $\mathbf{v}_\mathfrak{C}$.

Related articles: Most relevant | Search more
arXiv:1108.4725 [math.NT] (Published 2011-08-24)
Relations between multizeta values in characteristic p
arXiv:0911.2643 [math.NT] (Published 2009-11-13)
Multizeta values: Lie algebras and periods on $\mathfrak{M}_{0,n}$
arXiv:2208.08716 [math.NT] (Published 2022-08-18)
A motivic interpretation of Whittaker periods for $\mathrm{GL}_n$