{ "id": "1904.02248", "version": "v1", "published": "2019-04-03T21:48:06.000Z", "updated": "2019-04-03T21:48:06.000Z", "title": "A $t$-motivic interpretation of shuffle relations for multizeta values", "authors": [ "Wei-Cheng Huang" ], "categories": [ "math.NT" ], "abstract": "Thakur (2010) showed that, for $r,$ $s\\in \\mathbb{N}$, a product of two Carlitz zeta values $\\zeta_A(r)$ and $\\zeta_A(s)$ can be expressed as an $\\mathbb{F}_p$-linear combination of $\\zeta_A(r+s)$ and double zeta values of weight $r+s$. Such an expression is called shuffle relation by Thakur. Fixing $r,$ $s\\in \\mathbb{N}$, we construct a $t$-module $E'$. To determine whether an $(r+s)$-tuple $\\mathfrak{C}$ in $\\mathbb{F}_q(\\theta)^{r+s}$ gives a shuffle relation, we relate it to the $\\mathbb{F}_q[t]$-torsion property of the point $\\mathbf{v}_\\mathfrak{C}\\in E'(\\mathbb{F}_q[\\theta])$ constructed with respect to the given $(r+s)$-tuple $\\mathfrak{C}$. We also provide an effective criterion for deciding the $\\mathbb{F}_q[t]$-torsion property of the point $\\mathbf{v}_\\mathfrak{C}$.", "revisions": [ { "version": "v1", "updated": "2019-04-03T21:48:06.000Z" } ], "analyses": { "keywords": [ "shuffle relation", "multizeta values", "motivic interpretation", "torsion property", "carlitz zeta values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }