arXiv:1904.01708 [math.AT]AbstractReferencesReviewsResources
Symmetric Powers and Eilenberg--Maclane Spectra
Published 2019-04-02Version 1
We filter the equivariant Eilenberg Maclane spectrum $H\underline{\mathbb{F}}_p$ using the mod $p$ symmetric powers of the equivariant sphere spectrum, $\mathrm{Sp}_{\mathbb{Z}/p}^{\infty}(\Sigma^{\infty G}S^0)$. When $G$ is a $p$-group, we show that the layers in the filtration are the Steinberg summands of the equivariant classifying spaces of $(\mathbb{Z}/p)^n$ for $n=0, 1, 2, \ldots$. We show that the layers of the filtration split after smashing with $H\underline{\mathbb{F}}_p$. Along the way, we produced a general computation of the geometric fixed points of $H\underline{\mathbb{Z}}$ and $H\underline{\mathbb{F}}_p$ by using symmetric powers.
Comments: 47 pages
Categories: math.AT
Related articles: Most relevant | Search more
arXiv:1711.05708 [math.AT] (Published 2017-11-15)
Steinberg Summands and Symmetric Powers of the G-Sphere
arXiv:2204.03797 [math.AT] (Published 2022-04-08)
On the $KU_G$-local equivariant sphere
arXiv:1510.04969 [math.AT] (Published 2015-10-16)
Homotopy theory of symmetric powers