{ "id": "1904.01708", "version": "v1", "published": "2019-04-02T23:28:12.000Z", "updated": "2019-04-02T23:28:12.000Z", "title": "Symmetric Powers and Eilenberg--Maclane Spectra", "authors": [ "Krishanu Sankar" ], "comment": "47 pages", "categories": [ "math.AT" ], "abstract": "We filter the equivariant Eilenberg Maclane spectrum $H\\underline{\\mathbb{F}}_p$ using the mod $p$ symmetric powers of the equivariant sphere spectrum, $\\mathrm{Sp}_{\\mathbb{Z}/p}^{\\infty}(\\Sigma^{\\infty G}S^0)$. When $G$ is a $p$-group, we show that the layers in the filtration are the Steinberg summands of the equivariant classifying spaces of $(\\mathbb{Z}/p)^n$ for $n=0, 1, 2, \\ldots$. We show that the layers of the filtration split after smashing with $H\\underline{\\mathbb{F}}_p$. Along the way, we produced a general computation of the geometric fixed points of $H\\underline{\\mathbb{Z}}$ and $H\\underline{\\mathbb{F}}_p$ by using symmetric powers.", "revisions": [ { "version": "v1", "updated": "2019-04-02T23:28:12.000Z" } ], "analyses": { "keywords": [ "symmetric powers", "eilenberg-maclane spectra", "equivariant eilenberg maclane spectrum", "equivariant sphere spectrum", "filtration split" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }