arXiv:1903.11933 [math.CO]AbstractReferencesReviewsResources
Metric dimension of maximal outerplanar graphs
Mercè Claverol, Alfredo García, Greogorio Hernández, Carmen Hernando, Montserrat Maureso, Mercè Mora, Javier Tejel
Published 2019-03-28Version 1
In this paper, we study the metric dimension problem in maximal outerplanar graphs. Concretely, if $\beta (G)$ is the metric dimension of a maximal outerplanar graph $G$ of order $n$, we prove that $2\le \beta (G) \le \lceil \frac{2n}{5}\rceil$ and that the bounds are tight. We also provide linear algorithms to decide whether the metric dimension of $G$ is 2 and to build a resolving set of size $\lceil \frac{2n}{5}\rceil$ for $G$. Moreover, we characterize the maximal outerplanar graphs with metric dimension 2.
Comments: 25 pages, 16 figures
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2410.08662 [math.CO] (Published 2024-10-11)
Metric Dimension of Villarceau Grids
Resolving sets for Johnson and Kneser graphs
Robert F. Bailey, José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Karen Meagher, María Luz Puertas
arXiv:2106.08303 [math.CO] (Published 2021-06-15)
The distance-$k$ dimension of graphs