{ "id": "1903.11933", "version": "v1", "published": "2019-03-28T13:05:00.000Z", "updated": "2019-03-28T13:05:00.000Z", "title": "Metric dimension of maximal outerplanar graphs", "authors": [ "Mercè Claverol", "Alfredo García", "Greogorio Hernández", "Carmen Hernando", "Montserrat Maureso", "Mercè Mora", "Javier Tejel" ], "comment": "25 pages, 16 figures", "categories": [ "math.CO" ], "abstract": "In this paper, we study the metric dimension problem in maximal outerplanar graphs. Concretely, if $\\beta (G)$ is the metric dimension of a maximal outerplanar graph $G$ of order $n$, we prove that $2\\le \\beta (G) \\le \\lceil \\frac{2n}{5}\\rceil$ and that the bounds are tight. We also provide linear algorithms to decide whether the metric dimension of $G$ is 2 and to build a resolving set of size $\\lceil \\frac{2n}{5}\\rceil$ for $G$. Moreover, we characterize the maximal outerplanar graphs with metric dimension 2.", "revisions": [ { "version": "v1", "updated": "2019-03-28T13:05:00.000Z" } ], "analyses": { "subjects": [ "05C12", "05C62" ], "keywords": [ "maximal outerplanar graph", "metric dimension problem", "linear algorithms", "resolving set" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }