arXiv Analytics

Sign in

arXiv:1903.11307 [math.RT]AbstractReferencesReviewsResources

Pure semisimple $n$-cluster tilting subcategories

Ramin Ebrahimi, Alireza Nasr-Isfahani

Published 2019-03-27Version 1

From the viewpoint of higher homological algebra, we introduce pure semisimple $n$-abelian category, which is analogs of pure semisimple abelian category. Let $\Lambda$ be an Artin algebra and $\mathcal{M}$ be an $n$-cluster tilting subcategory of $Mod$-$\Lambda$. We show that $\mathcal{M}$ is pure semisimple if and only if each module in $\mathcal{M}$ is a direct sum of finitely generated modules. Let $\mathfrak{m}$ be an $n$-cluster tilting subcategory of $mod$-$\Lambda$. We show that $Add(\mathfrak{m})$ is an $n$-cluster tilting subcategory of $Mod$-$\Lambda$ if and only if $\mathfrak{m}$ has an additive generator if and only if $Mod(\mathfrak{m})$ is locally finite. This generalizes Auslander's classical results on pure semisimplicity of Artin algebras.

Related articles: Most relevant | Search more
arXiv:1110.6734 [math.RT] (Published 2011-10-31, updated 2012-02-28)
Morphisms determined by objects: The case of modules over artin algebras
arXiv:1811.12588 [math.RT] (Published 2018-11-30)
Two-term relative cluster tilting subcategories, $τ-$tilting modules and silting subcategories
arXiv:1805.12180 [math.RT] (Published 2018-05-30)
Gluing of $n$-cluster tilting subcategories for representation-directed algebras