{ "id": "1903.11307", "version": "v1", "published": "2019-03-27T09:36:38.000Z", "updated": "2019-03-27T09:36:38.000Z", "title": "Pure semisimple $n$-cluster tilting subcategories", "authors": [ "Ramin Ebrahimi", "Alireza Nasr-Isfahani" ], "categories": [ "math.RT", "math.RA" ], "abstract": "From the viewpoint of higher homological algebra, we introduce pure semisimple $n$-abelian category, which is analogs of pure semisimple abelian category. Let $\\Lambda$ be an Artin algebra and $\\mathcal{M}$ be an $n$-cluster tilting subcategory of $Mod$-$\\Lambda$. We show that $\\mathcal{M}$ is pure semisimple if and only if each module in $\\mathcal{M}$ is a direct sum of finitely generated modules. Let $\\mathfrak{m}$ be an $n$-cluster tilting subcategory of $mod$-$\\Lambda$. We show that $Add(\\mathfrak{m})$ is an $n$-cluster tilting subcategory of $Mod$-$\\Lambda$ if and only if $\\mathfrak{m}$ has an additive generator if and only if $Mod(\\mathfrak{m})$ is locally finite. This generalizes Auslander's classical results on pure semisimplicity of Artin algebras.", "revisions": [ { "version": "v1", "updated": "2019-03-27T09:36:38.000Z" } ], "analyses": { "subjects": [ "16E30" ], "keywords": [ "cluster tilting subcategory", "artin algebra", "pure semisimple abelian category", "generalizes auslanders classical results", "pure semisimplicity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }