arXiv:1903.11153 [math.FA]AbstractReferencesReviewsResources
A note on the common spectral properties for bounded linear operators
Published 2019-03-26Version 1
Let $X$ and $Y$ be Banach spaces, $A\,:\,X\rightarrow Y$ and $B,\,C\,:\,Y\rightarrow X$ be bounded linear operators. We prove that if $A(BA)^2=ABACA=ACABA=(AC)^2A,$ then $$\sigma_{*}(AC)\setminus\{0\}=\sigma_{*}(BA)\setminus\{0\}$$ where $\sigma_*$ runs over a large of spectra originated by regularities.
Comments: 9 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1105.0836 [math.FA] (Published 2011-05-04)
On the generalized resolvent of linear pencils in Banach spaces
arXiv:math/9406215 [math.FA] (Published 1994-06-07)
The Uniform Classification of Banach Spaces
arXiv:math/0612606 [math.FA] (Published 2006-12-20)
Multipliers and Toeplitz operators on Banach spaces of sequences