{ "id": "1903.11153", "version": "v1", "published": "2019-03-26T21:01:33.000Z", "updated": "2019-03-26T21:01:33.000Z", "title": "A note on the common spectral properties for bounded linear operators", "authors": [ "Hassane Zguitti" ], "comment": "9 pages", "categories": [ "math.FA" ], "abstract": "Let $X$ and $Y$ be Banach spaces, $A\\,:\\,X\\rightarrow Y$ and $B,\\,C\\,:\\,Y\\rightarrow X$ be bounded linear operators. We prove that if $A(BA)^2=ABACA=ACABA=(AC)^2A,$ then $$\\sigma_{*}(AC)\\setminus\\{0\\}=\\sigma_{*}(BA)\\setminus\\{0\\}$$ where $\\sigma_*$ runs over a large of spectra originated by regularities.", "revisions": [ { "version": "v1", "updated": "2019-03-26T21:01:33.000Z" } ], "analyses": { "subjects": [ "47A10", "47A53", "47A55" ], "keywords": [ "bounded linear operators", "common spectral properties", "banach spaces", "regularities" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }