arXiv Analytics

Sign in

arXiv:1903.10809 [math.RT]AbstractReferencesReviewsResources

The Multiset Partition Algebra

Sridhar Narayanan, Digjoy Paul, Shraddha Srivastava

Published 2019-03-26Version 1

For each partition $\lambda$, we introduce the multiset partition algebra $\mathcal{MP}_\lambda(\xi)$ over $F[\xi]$, where $F$ is a field of characteristic $0$. Upon specializing $\xi$ to a positive integer $n$, the resulting algebra $\mathcal{MP}_\lambda(n)$ is in Schur-Weyl duality with the action of the symmetric group $S_n$ on $\text{Sym}^\lambda(F^n)$. The generating function of the dimensions of irreducible representations of $\mathcal{MP}_{\lambda}(n)$ is given in terms of Schur functions. When $\lambda$ is a partition of $k$, $\mathcal{MP}_\lambda(\xi)$ is isomorphic to a subalgebra of the partition algebra $\mathcal{P}_k(\xi)$ of Jones and Martin. When $\lambda=(1^k)$, $\mathcal{MP}_\lambda(\xi)$ is isomorphic to $\mathcal{P}_k(\xi)$. We identify a subalgebra of $\mathcal{MP}_{\lambda}(\xi)$ called the balanced multiset partition algebra whose structure constants do not depend on $\xi$. This algebra is in Schur-Weyl duality with the group of monomial matrices acting on $\text{Sym}^\lambda(F^n)$.

Comments: 34 pages. Comments welcome
Categories: math.RT, math.CO
Subjects: 05E10, 05E15, 20C30
Related articles: Most relevant | Search more
arXiv:math/0511043 [math.RT] (Published 2005-11-02, updated 2005-11-30)
A note on the Grothendieck ring of the symmetric group
arXiv:0811.3544 [math.RT] (Published 2008-11-21)
The complexity of certain Specht modules for the symmetric group
arXiv:math/0508162 [math.RT] (Published 2005-08-09, updated 2006-03-02)
Bases for certain cohomology representations of the symmetric group